8 research outputs found

    Dynamic twisting and imaging of moir\'e crystals

    Full text link
    The electronic band structure is an intrinsic property of solid-state materials that is intimately connected to the crystalline arrangement of atoms. Moir\'e crystals, which emerge in twisted stacks of atomic layers, feature a band structure that can be continuously tuned by changing the twist angle between adjacent layers. This class of artificial materials blends the discrete nature of the moir\'e superlattice with intrinsic symmetries of the constituent materials, providing a versatile platform for investigation of correlated phenomena whose origins are rooted in the geometry of the superlattice, from insulating states at "magic angles" to flat bands in quasicrystals. Here we present a route to mechanically tune the twist angle of individual atomic layers with a precision of a fraction of a degree inside a scanning probe microscope, which enables continuous control of the electronic band structure in-situ. Using nanostructured rotor devices, we achieve the collective rotation of a single layer of atoms with minimal deformation of the crystalline lattice. In twisted bilayer graphene, we demonstrate nanoscale control of the moir\'e superlattice period via external rotations, as revealed using piezoresponse force microscopy. We also extend this methodology to create twistable boron nitride devices, which could enable dynamic control of the domain structure of moir\'e ferroelectrics. This approach provides a route for real-time manipulation of moir\'e materials, allowing for systematic exploration of the phase diagrams at multiple twist angles in a single device

    Biomimetic engineering of conductive curli protein films

    No full text
    Bioelectronic systems derived from peptides and proteins are of particular interest for fabricating novel flexible, biocompatible and bioactive devices. These synthetic or recombinant systems designed for mediating electron transport often mimic the proteinaceous appendages of naturally occurring electroactive bacteria. Drawing inspiration from such conductive proteins with a high content of aromatic residues, we have engineered a fibrous protein scaffold, curli fibers produced by Escherichia coli bacteria, to enable long-range electron transport. We report the genetic engineering and characterization of curli fibers containing aromatic residues of different nature, with defined spatial positioning, and with varying content on single self-assembling CsgA curli subunits. Our results demonstrate the impressive versatility of the CsgA protein for genetically engineering protein-based materials with new functions. Through a scalable purification process, we show that macroscopic gels and films can be produced, with engineered thin films exhibiting a greater conductivity compared with wild-type curli films. We anticipate that this engineered conductive scaffold, and our approach that combines computational modeling, protein engineering, and biosynthetic manufacture will contribute to the improvement of a range of useful bio-hybrid technologies.Peer ReviewedPreprin

    Single-Particle Studies Reveal a Nanoscale Mechanism for Elastic, Bright, and Repeatable ZnS:Mn Mechanoluminescence in a Low-Pressure Regime.

    No full text
    Mechanoluminescent materials, which emit light in response to elastic deformation, are demanded for use as in situ stress sensors. ZnS doped with Mn is known to exhibit one of the lowest reported thresholds for appearance of mechanoluminescence, with repeatable light emission under contact pressure <10 MPa. The physical basis for such behavior remains as yet unclear. Here, reliable microscopic detection of mechanoluminescence of single ZnS:Mn microparticles, in combination with nanoscale structural characterization, provides evidence that the mechanoluminescent properties of these particles result from interplay between a non-centrosymmetric crystal lattice and its defects, viz., dislocations and stacking faults. Statistical analysis of the distributions of mechanoluminescence energy release trajectories reveals two distinct mechanisms of excitation: one attributable to a piezo-phototronic effect and the other due to dislocation motion. At pressures below 8.1 MPa, both mechanisms contribute to mechanoluminescent output, with a dominant contribution from the piezo-phototronic mechanism. In contrast, above 8.1 MPa, dislocation motion is the primary excitation source. For the piezo-phototronic mechanism, we propose a specific model that accounts for elastic ZnS:Mn mechanoluminescence under very low pressure. The charged interfaces in stacking faults lead to the presence of filled traps, which otherwise would be empty in the absence of the built-in electric field. Upon application of external stress, local enhancement of the piezoelectric field at the stacking faults' interfaces facilitates release of the trapped carriers and subsequent luminescence. This field enhancement explains how <10 MPa pressure produces thousands of photons

    Characterization and Electrical Properties of Individual Au–NiO–Au

    No full text
    nanowires in the Au–NiO–Au system have been synthesized using a template-based method. These nanowires are 70 nm in diameter and 7 m in total length, with a 100 to 300 nm wide NiO segment sandwiched between the Au nanowires axially. Detailed electron-microscopy characterization studies of these nanowires show that the oxide segment is primarily cubic NiO and nanocrystalline, and that both the Au–NiO interfaces are well-defined. These Au–NiO–Au nanowires have been incorporated into high-quality single-nanowire devices, fabricated using a direct-write method. The current–voltage @ – A responses of individual Au–NiO–Au nanowires have been measured as a function of temperature in the range 298 to 573 K. While the – response at room temperature has been found to be nonlinear, it becomes more linear and less resistive with increasing temperature. These types of MOM nanowires are likely to offer certain advantages over all-oxide nanowires in fundamental size-effect studies, and they could be potentially useful as nanoscale building blocks for multifunctional nanoelectronics of the future. Index Terms—Electrical properties, electron microscopy, heterojunctions, nanowires, nickel oxide, single-nanowire devices, temperature effects. I

    An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss

    No full text
    Stabilization of the crystal phase of inorganic/organic lead halide perovskites is critical for their high performance optoelectronic devices. However, due to the highly ionic nature of perovskite crystals, even phase stabilized polycrystalline perovskites can undergo undesirable phase transitions when exposed to a destabilizing environment. While various surface passivating agents have been developed to improve the device performance of perovskite solar cells, conventional deposition methods using a protic polar solvent, mainly isopropyl alcohol (IPA), results in a destabilization of the underlying perovskite layer and an undesirable degradation of device properties. We demonstrate the hidden role of IPA in surface treatments and develop a strategy in which the passivating agent is deposited without destabilizing the high quality perovskite underlayer. This strategy maximizes and stabilizes device performance by suppressing the formation of the perovskite δ-phase and amorphous phase during surface treatment, which is observed using conventional methods. Our strategy also effectively passivates surface and grain boundary defects, minimizing non-radiative recombination sites, and preventing carrier quenching at the perovskite interface. This results in an open-circuit-voltage loss of only ∼340 mV, a champion device with a power conversion efficiency of 23.4% from a reverse current–voltage scan, a device with a record certified stabilized PCE of 22.6%, and enhanced operational stability. In addition, our perovskite solar cell exhibits an electroluminescence external quantum efficiency up to 8.9%. ©2019Institute for Soldier Nanotechnology (Grant W911NF-13-D-0001)NASA (Grant NNX16AM70H)DOE Division of Materials Sciences and Engineering (Award DE-FG02-07ER46454)NSF (Grant CBET-1605495

    Engineering of Mature Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Using Substrates with Multiscale Topography

    No full text
    Producing mature and functional cardiomyocytes (CMs) by in vitro differentiation of induced pluripotent stem cells (iPSCs) using only biochemical cues is challenging. To mimic the biophysical and biomechanical complexity of the native in vivo environment during the differentiation and maturation process, polydimethylsiloxane substrates with 3D topography at the micrometer and sub-micrometer levels are developed and used as cell-culture substrates. The results show that while cylindrical patterns on the substrates resembling mature CMs enhance the maturation of iPSC-derived CMs, sub-micrometer-level topographical features derived by imprinting primary human CMs further accelerate both the differentiation and maturation processes. The resulting CMs exhibit a more-mature phenotype than control groups—as confirmed by quantitative polymerase chain reaction, flow cytometry, and the magnitude of beating signals—and possess the shape and orientation of mature CMs in human myocardium—as revealed by fluorescence microscopy, Ca2+ flow direction, and mitochondrial distribution. The experiments, combined with a virtual cell model, show that the physico-mechanical cues generated by these 3D-patterned substrates improve the phenotype of the CMs via the reorganization of the cytoskeletal network and the regulation of chromatin conformation
    corecore